INVESTIGATION OF MECHANICAL AND EMI SHIELDING PERFORMANCE OF POLYPROPYLENE (PP)/CARBON NANTUBE (CNT)/GLASS FIBER MICROCELLULAR FOAM
Poster Presentation XML
Authors
1Nanomaterials Group, Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
2Department of Polymer Engineering, AmirKabir University of Technology, Tehran, Iran
33. Department of Polymer Engineering & Color Technology, AmirKabir University of Technology, Tehran, Iran
Abstract
Polypropylene (PP)/Multiwall-Carbon-Nanotube (CNT) nanocomposites and PP/CNT/Glass fiber (GF) hybrids were foamed using supercritical carbon dioxide (CO2) through a batch foaming process. Uniform nanofiller dispersion was assessed by field emission scanning electron microscopy (FE-SEM). By incorporating CNTs in the matrix, the average cell size was reduced to less than one-second that of neat foam (from 49 to 22.5 µm), and cell density increased. As a matter of fact, high electrical conductivity is crucial to achieving a great electromagnetic interference (EMI) shielding performance. Hence, CNTs were loaded up to 3 wt%. By incorporation of CNTs, electrical conductivity increased from ~10-16 to ~10-4 and ~10-5 for unfoamed and foamed PP/CNT3 samples, respectively, and EMI shielding effectiveness increased to 11 dB and 9.5 dB for unfoamed and foamed PP/CNT3 samples, respectively. After evaluating the microstructural and electrical properties of the nanocomposites and their foams, as well as elucidating the foaming process's role in the EMI shielding performance of the hybrids and foams, there was a great need to investigate the mechanical properties of hybrid systems and the effect of fiber concentration. Tensile properties revealed that by increasing the fiber content, young modulus and tensile strength increased for unfoamed samples and decreased for foams. Compression test of hybrid foams shown that by loading nanotubes and glass fibers, mechanical properties in compression mode increased. Also, by incorporation of CNTs and glass fibers, impact properties increased and decreased, respectively for solid samples, and for foamed hybrids by loading of both CNTs and fibers impact properties enhanced.
Keywords