

School of Mechanical Engineering, College of Engineering, University of Tehran, Iran

ABSTRACT

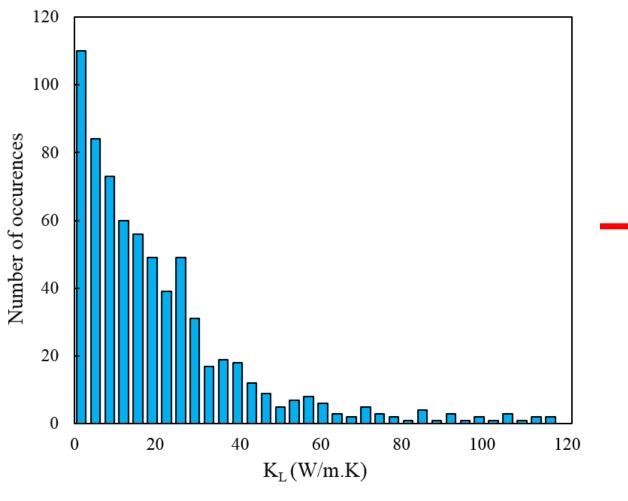
Predicting models for thermal conductivity (TC) of novel nanostructures have diverse applications. Within this process, new materials along with a better understanding of thermal management can be achieved. Although, the nature of TC makes it usually a troublous goal to predict. While experiments on this problem are quite expensive and inefficient to use, the classic models that have been used to predict TC are not effective neither when compared to those of density functional theory (DFT) nor molecular dynamics (MD) simulations. Providing researchers with a powerful tool to predict TC, DFT and MD acquire hours of CPUs and relatively high computing cost. This trouble seems to be more serious when the TC in larger scales is required. Herein, we use deep learning neural networks as well as proposing a genetic programming based Symbolic Regression (SR) approach to train the algorithms and obtain a better predicting model of nanostructure thermal conductivities. Our results show a five-fold reduction in simulation time versus current methods such as molecular dynamics or density functional theory.

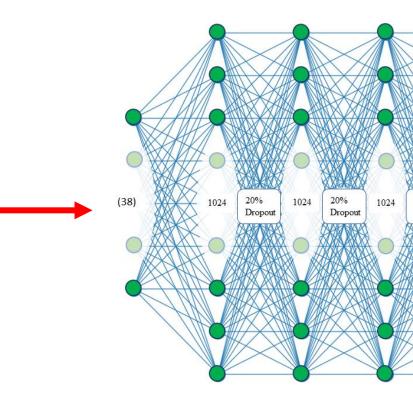
OBJECTIVES

In this study we explore machine learning models with the concentration of extrapolations to investigate thermal conductivity of any lattice nanostructure provided enough input parameters such as bulk, shear, and young's modulus and environmental parameters are available.

MATERIALS & METHODS

In total, there are 347 nanostructure samples as our dataset all carried out based on DFT. We use a hybrid cross-validation approach including both K-Fold CV and holdout validations to compare these models. To evaluate our models, we use two well-known statistical criteria which are RMSE and R^2 as our metrics. Our first model uses genetic programming for **Symbolic Regression (SR)** which can generate a physical formula connecting material input properties to thermal conductivity. For symbolic regression we conduct two different models refer to as GP1 and GP2, the latter is using richer functions as opposed to the former which is only allowed to use some simple functions. The second model is a **deep neural** network model of a Multi-Layer Perceptron (MLP) which benefits from Adam optimizer.





Predicting Thermal Conductivity of Nanostructures by Implementation of Deep Neural Networks and Genetic Programming Based Symbolic Regression

Erfan Ghavaminezhad, Maryam Mahnama

RESULTS

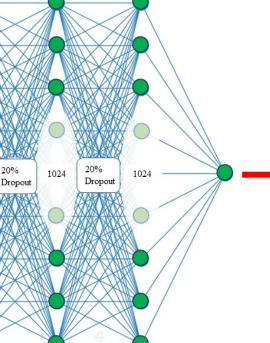
This was observed that neural networks are impressively strong in the process of training algorithm, and they outperform other models in all of our experiments during training. All models presented a weaker performance during extrapolation experiments comparing to cross-validation performance results. We believe this phenomenon occurs because of low distribution quality in our dataset since changing the set of data for training and using all the data in the domain has increased the efficiency.

In some cases the GP1 model outperforms the GP2 models despite the fact that it generates a much simpler formula in terms of parameters and available functions. This is mostly because the GP2 model has to search an intensively larger space in comparison to the GP1 and while the models is limited in terms of operational space to generate a time efficient formula, it is clear to the authors that this model will perform better provided enough calculation time is available.

In our closest test to the actual extrapolation test, as we prevent the similarity of dataset may help the models to predict the thermal conductivity for evaluation block, The Neural Network model outperformed in this test.

There are admittedly both benefits and drawback to all machine learning models have been used in this study. The symbolic regression models are computationally expensive although the advantage is that it yields to an unprecedented formula with a physical insight. Having said that, it is impossible to apply this model to many problems as it is quite restrictive in terms of what it can do and not every property can be expressed with an explicit expression. Predicting such an expression may not be appropriate in complicated cases. On the contrary, the Neural Network models are believed to be able to make a relation between enough input data of almost any problem to the desired results provided the architecture is well-established and minding the overfitting not happen as well.

[1] [2] 1032–1050. [4] [5] 85(19), p. 195302.



	GP1	GP2	MLP	Analytical	Best
Formula	$\frac{0.63Mn}{n_p}$	$\boxed{Bn.\cos^2\left(\frac{14.21}{n}\right)}$	-	$A.\frac{(\theta_e)^3 M\sqrt[3]{Vn_p}}{n^{4/3}T{\gamma_a}^2}$	
Training RMSE	7.607	5.610	4.598	22.249	MLP
Testing RMSE	43.524	44.856	43.934	36.043	MLP
Training R ²	0.199	0.650	0.750	0.079	MLP
Testing R ²	-1.43	-2.009	-1.813	-1.109	MLP

CONCLUSION

REFERENCES

Behler, J., 2017, "First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems," Angew. Chemie Int. Ed., 56(42), pp. 12828–12840.

Behler, J., 2015, "Constructing High-Dimensional Neural Network Potentials: A Tutorial Review," Int. J. Quantum Chem., 115(16), pp.

Morelli, D. T., and Slack, G. A., 2006, "High Lattice Thermal Conductivity Solids," High Thermal Conductivity Materials, Springer New York, pp. 37–68.

Mortazavi, B., 2017, "Ultra High Stiffness and Thermal Conductivity of Graphene like C3N," Carbon N. Y., 118, pp. 25–34.

Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., and Chen, G., 2012, "Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics," Phys. Rev. B - Condens. Matter Mater. Phys.,

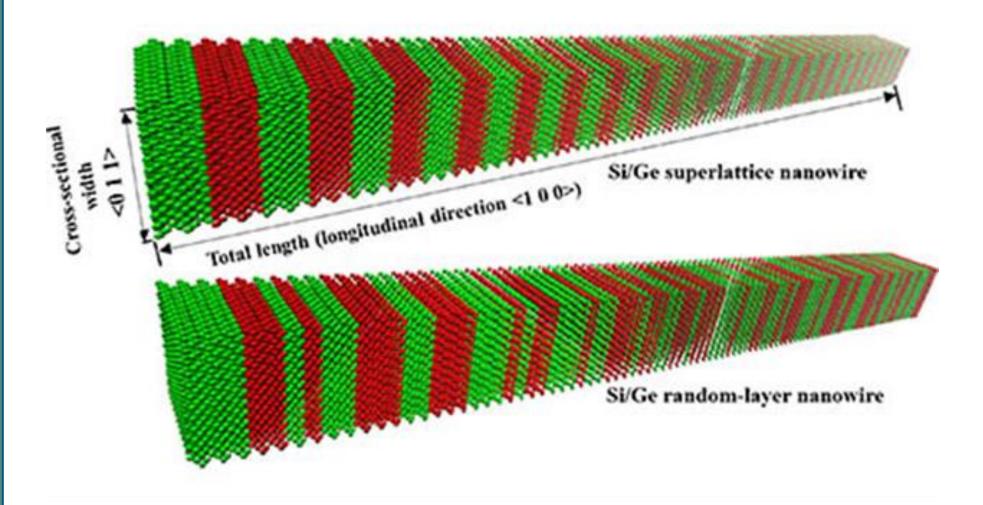
Chen, X., Munjiza, A., Zhang, K., and Wen, D., 2014, "Molecular Dynamics Simulation of Heat Transfer from a Gold Nanoparticle to a Water Pool," J. Phys. Chem. C, 118(2), pp. 1285–1293.

CONTACT

We invite you to contact us via email at: erfanghavami@ut.ac.ir <u>m.mahnama@ut.ac.ir</u>

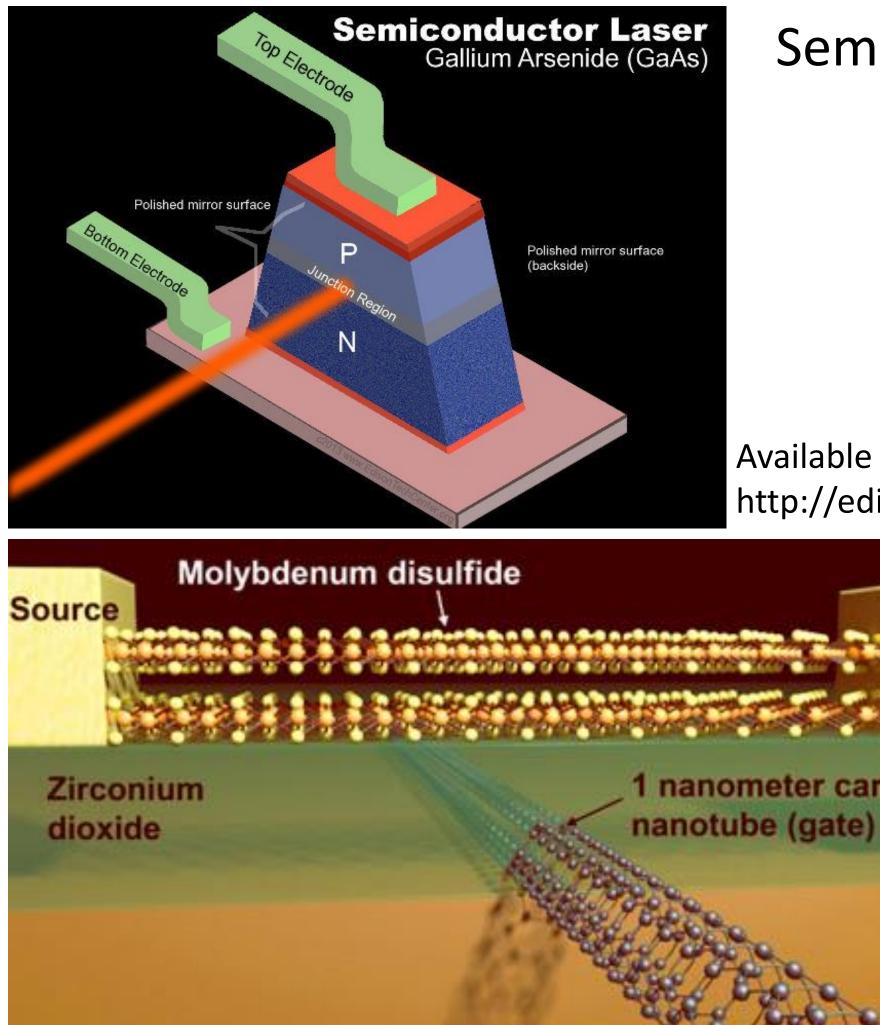
Superlattice

superlattice is a periodic Α structure of layers of two (or more) materials. Typically, the thickness of one layer is several nanometers.



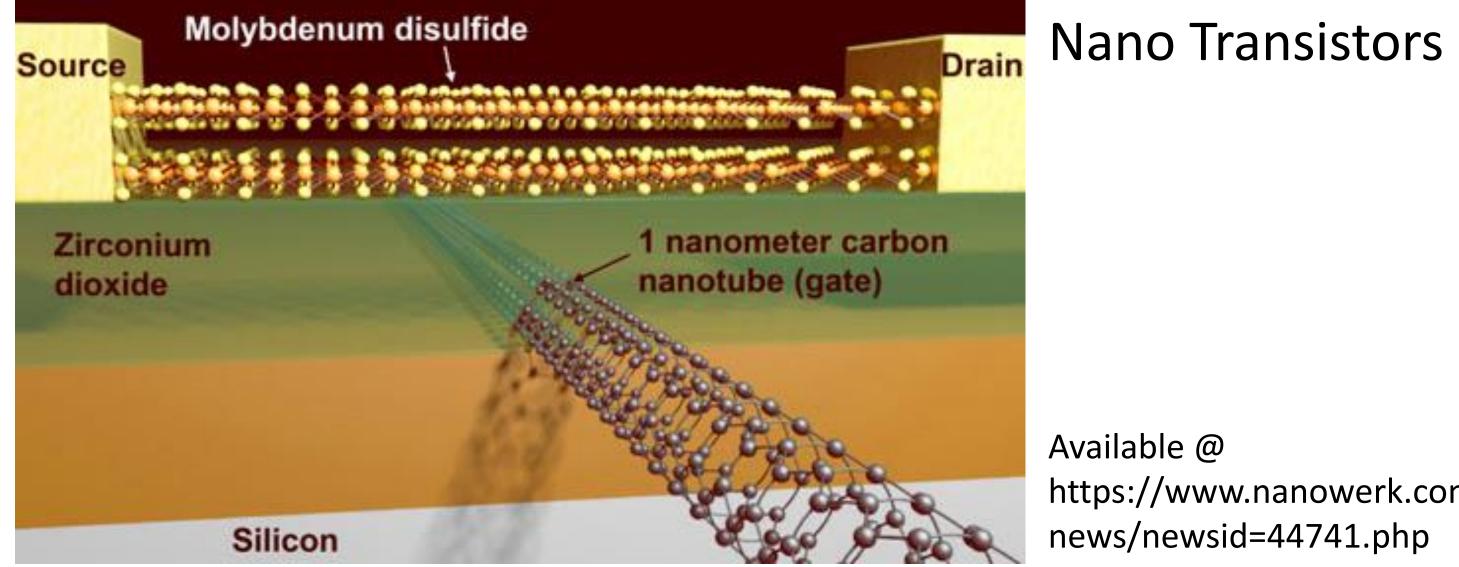
Zan Wang, Xingyu Cai, Tiezhu Mao. (2019) Thermal Transport in Silicon-Germanium Superlattices at Low Temperatures. Journal of Nanomaterials 2019, 1-9.

Applications



Semiconductor Lasers

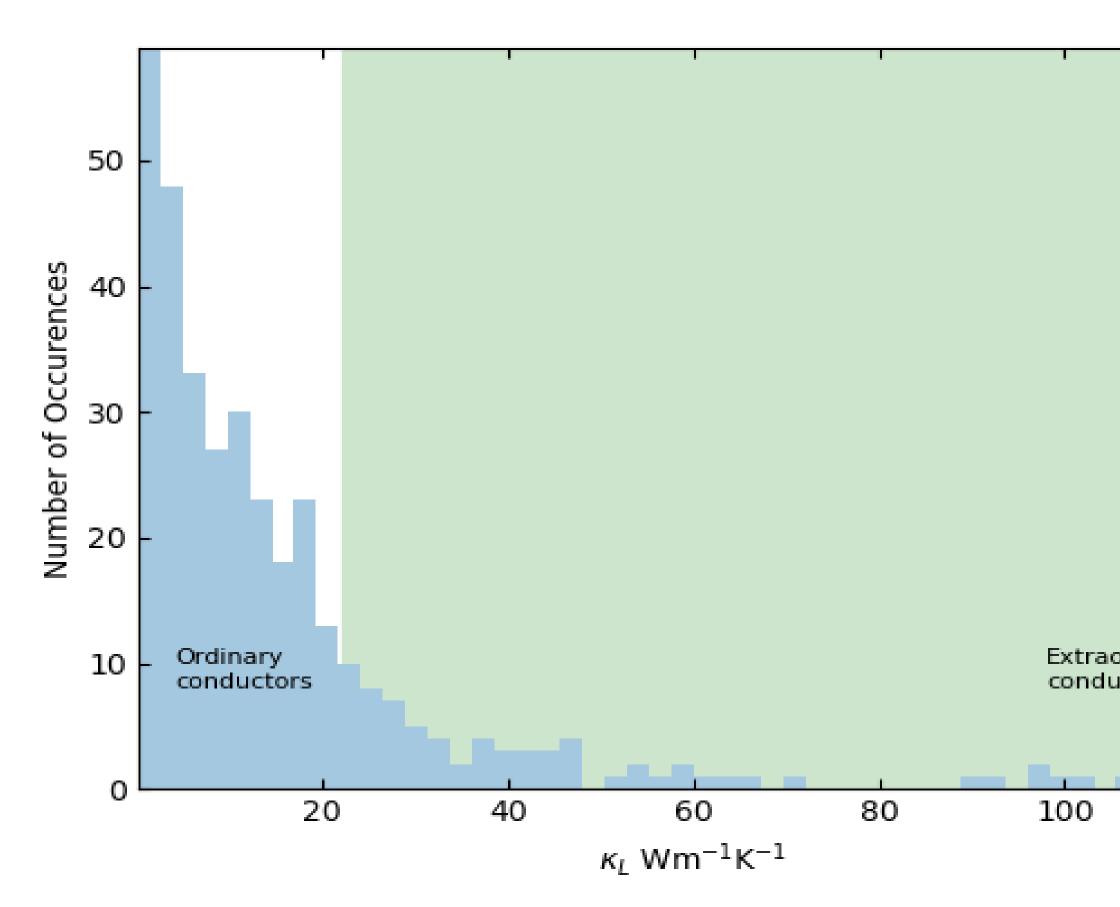
Available @ http://edisontechcenter.org/Lasers.html



Available @ https://www.nanowerk.com/nanotechnologynews/newsid=44741.php

Dataset

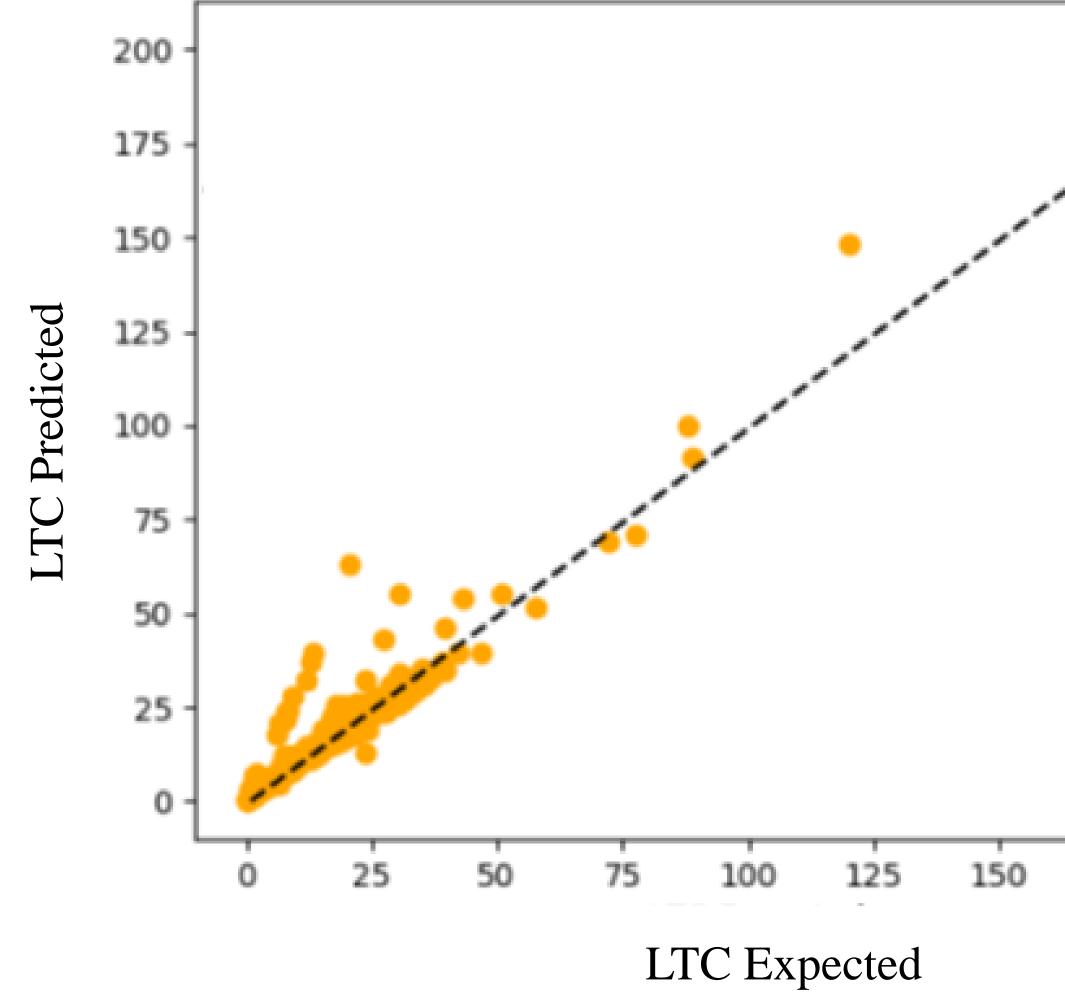
- In total, there are 347 samples. \bullet

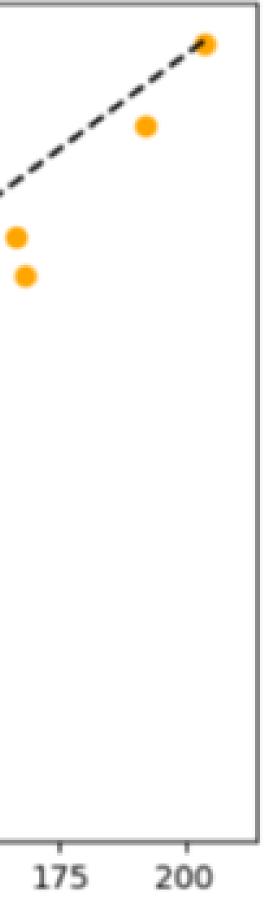


• To prepare the dataset, all the first-principles calculations are carried out based on density functional theory (DFT) as implemented in the Vienna ab-initio Simulation Package (VASP)

	Variable Symbol	Definition
	V	Volume per atom
	T	Temperature (constant: 300 K)
	M	Average atomic mass
-	n	Total number of atoms in unit cell
	n_p	Total number of atoms in primitive cell
	B	Bulk modulus calculated from C_{ij}^{a}
-	G	Shear modulus calculated from C_{ij}
	E	Young's modulus
	ν	Poisson's ratio
-	H	Estimated hardness
	B'	$(\delta B/\delta.V)$
	G'	$(\delta G/\delta.V)$
_	ρ	Mass density
	v_L	Sound velocities of the longitude
	v_S	Sound velocities of the shear
ordinary _	v_a	Corresponding average velocity
uctors	Θ_D	Debye temperature
	γ_L	Longitude acoustic Grüneisen parameters
	γ_S	Shear acoustic Grüneisen parameters
120	γ_a	Average acoustic Grüneisen parameters
	A	Empirical parameter

Verifying Effectiveness of Symbolic Regression





GP Model:

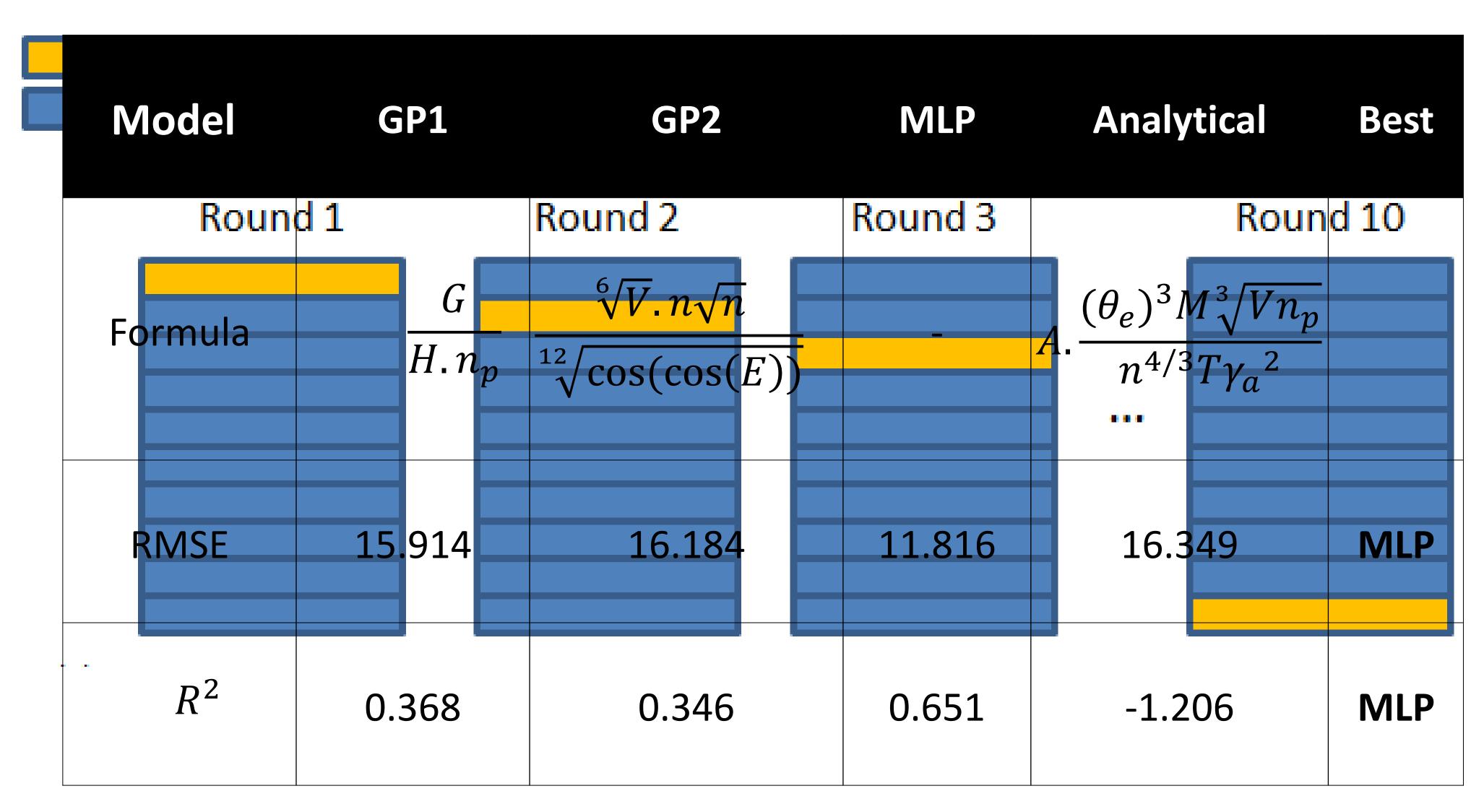
$$K_L = \frac{\theta e^2 \sqrt[3]{nM^2 \gamma e}}{n\sqrt[3]{T^7}}$$

Analytical Model:

$$K_L = A \cdot \frac{(\theta_e)^3 M \sqrt[3]{V}}{n^{4/3} T \gamma_a^2}$$

 $e^{9}\sqrt{\theta}e^{2}$

 n_p



Interpolation Test:10-Fold cross-validation

		Т	rair

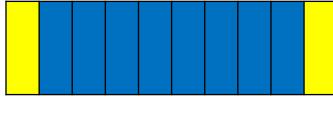
Extrapolation Test: 5-fold Cross Validation

	GP1	GP2	MLP	Analytical	Best
Formula	$\frac{Mn}{n_p}$	$\ln\left(\left \sqrt[3]{Bcos(\ln(p))}\right \right)^3 \cdot \left \ln\left(\left \ln^3\left(\left \sqrt{G}\right \right)\right \right)\right $	-	$A. \frac{(\theta_e)^3 M \sqrt[3]{Vn_p}}{n^{4/3} T \gamma_a^2}$	
Training RMSE	21.458	19.759	18.792	20.697	MLP
Testing RMSE	5.089	5.558	4.166	4.727	MLP
Training R ²	-0.059	0.102	0.188	0.053	MLP
Testing R ²	-38.381	-45.97	-45.97	-32.971	GP1

	GP1	GP2	MLP	Analy
Formula	$\frac{0.68Mn}{n_p}$	$4ln^{2}(n) \cdot \sqrt[3]{Bn \cdot cos^{2}\left(\frac{15.49}{n}\right)} \cdot \sqrt[9]{\frac{B}{sin^{2}(M)}}$		$A. \frac{(\theta_e)^3 N}{n^{4/3}}$
Training RMSE	5.534	4.729	3.113	19.4
Testing RMSE	45.257	44.038	43.979	37.9
Training R ²	0.196	0.413	0.745	0.08
Testing R ²	-1.98	-1.821	-1.814	-1.1

Extrapolation Tests

	GP1	GP2	MLP	Analytical	Best
Formula	$\frac{0.31B}{n_p}$	$B^{\frac{1}{2}}n_p^{\frac{1}{9}}\cos(\cos(\sin(\cos V)))\cos(\frac{1}{\tan(e^n)^3})^2$	-	$A.\frac{(\theta_e)^3 M\sqrt[3]{Vn_p}}{n^{4/3}T{\gamma_a}^2}$	
Training RMSE	20.293	18.398	17.332	19.392	MLP
Testing RMSE	4.788	5.825	4.992	14.029	GP1
Training R ²	0.159	0.309	0.387	0.036	MLP
Testing R ²	-6.718	-10.424	-7.391	-65.266	GP1



	GP1	GP2	MLP	Analytical	Best
Formula	G 8.36B	$\sqrt{Ecos(ln^2(\cos(\ln(\cos(n_p)))))}$	-	$A.\frac{(\theta_e)^3 M\sqrt[3]{Vn_p}}{n^{4/3}T{\gamma_a}^2}$	
Training RMSE	8.396	7.206	5.423	18.808	MLP
Testing RMSE	42.99	40.869	40.922	36.101	GP2
Training R ²	-0.01	0.256	0.579	0.124	MLP
Testing R ²	-0.353	-0.223	-0.226	0.046	GP2

