Predicting Thermal Conductivity of Nanostructures by Implementation of Deep Neural Networks and Genetic Programming Based Symbolic
Regression
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ABSTRACT

Predicting models for thermal conductivity (TC) of novel nanostructures have
diverse applications. Within this process, new materials along with a better
understanding of thermal management can be achieved. Although, the nature of TC
makes it usually a troublous goal to predict. While experiments on this problem are
quite expensive and inefficient to use, the classic models that have been used to
predict TC are not effective neither when compared to those of density functional
theory (DFT) nor molecular dynamics (MD) simulations. Providing researchers with
a powerful tool to predict TC, DFT and MD acquire hours of CPUs and relatively high
computing cost. This trouble seems to be more serious when the TC in larger scales
is required. Herein, we use deep learning neural networks as well as proposing a
genetic programming based Symbolic Regression (SR) approach to train the
algorithms and obtain a better predicting model of nanostructure thermal
conductivities. Our results show a five-fold reduction in simulation time versus
current methods such as molecular dynamics or density functional theory.

OBJECTIVES

In this study we explore machine learning models with the concentration of
extrapolations to investigate thermal conductivity of any lattice nanostructure
provided enough input parameters such as bulk, shear, and young’s modulus and
environmental parameters are available.

120

100

60

Number of occurences

80

20

0 20 40 60 80 100 120
K, (WmK)

MATERIALS & METHODS

In total, there are 347 nanostructure samples as our dataset all carried out based
on DFT. We use a hybrid cross-validation approach including both K-Fold CV and
holdout validations to compare these models. To evaluate our models, we use two
well-known statistical criteria which are RMSE and R”*2 as our metrics.

Our first model uses genetic programming for Symbolic Regression (SR) which can
generate a physical formula connecting material input properties to thermal
conductivity. For symbolic regression we conduct two different models refer to as
GP1 and GP2, the latter is using richer functions as opposed to the former which is
only allowed to use some simple functions. The second model is a deep neural
network model of a Multi-Layer Perceptron (MLP) which benefits from Adam
optimizer.
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RESULTS

This was observed that neural networks are impressively strong in the process of
training algorithm, and they outperform other models in all of our experiments
during training. All models presented a weaker performance during extrapolation
experiments comparing to cross-validation performance results. We believe this
phenomenon occurs because of low distribution quality in our dataset since
changing the set of data for training and using all the data in the domain has
increased the efficiency.

In some cases the GP1 model outperforms the GP2 models despite the fact that it
generates a much simpler formula in terms of parameters and available functions.
This is mostly because the GP2 model has to search an intensively larger space in
comparison to the GP1 and while the models is limited in terms of operational
space to generate a time efficient formula, it is clear to the authors that this model
will perform better provided enough calculation time is available.

In our closest test to the actual extrapolation test, as we prevent the similarity of
dataset may help the models to predict the thermal conductivity for evaluation
block, The Neural Network model outperformed in this test.
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CONCLUSION

There are admittedly both benefits and drawback to all machine learning models
have been used in this study. The symbolic regression models are computationally
expensive although the advantage is that it yields to an unprecedented formula
with a physical insight. Having said that, it is impossible to apply this model to many
problems as it is quite restrictive in terms of what it can do and not every property
can be expressed with an explicit expression. Predicting such an expression may not
be appropriate in complicated cases. On the contrary, the Neural Network models
are believed to be able to make a relation between enough input data of almost
any problem to the desired results provided the architecture is well-established and
minding the overfitting not happen as well.
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Superlattice and the need to investigate heat transfer in them
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Superlattice Applications

A superlattice is a periodic
structure of layers of two (or
more) materials. Typically, the
thickness of one layer is several
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Materials, Data, and List of Descriptors
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Dataset

 To prepare the dataset, all the first-principles calculations are carried out based on density
functional theory (DFT) as implemented in the Vienna ab-initio Simulation Package (VASP)

* |n total, there are 347 samples.

Vanable Symbol Definition
. | | | | V Volume per atom
T Temperature (constant: 300 K)
M Average atomic mass
-0 § i T Total number of atoms 1n unit cell
My Total number of atoms 1n primitive cell
" B Bulk modulus calculated from C; °
o 0 7 G Shear modulus calculated from C;
E E Young's modulus
= 1/ Poisson's ratio
S 30k : H Estimated hardness
S B (& B/a.V)
@ G’ (6 G/A.V)
E >o b : 7] ]"-.“[1_15_5 density _
= vy, Sound velocities of the longitude
Ug Sound velocities of the shear
10 L Ordinary Extraordinary Vg Corresponding average velocity
conductors conductors B Debve temperature
L, Longitude acoustic Griineisen parameters
. . . . . vg Shear acoustic Griineisen parameters
0 =0 a0 60 g0 100 120 Va Average acoustic Griinelsen parameters
K, Wm-1K-1 A Empirical parameter
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Verifying Effectiveness of Symbolic Regression
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Interpolation Test:10-Fold cross-validation
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Extrapolation Test: 5-fold Cross Validation
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Extrapolation Tests
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