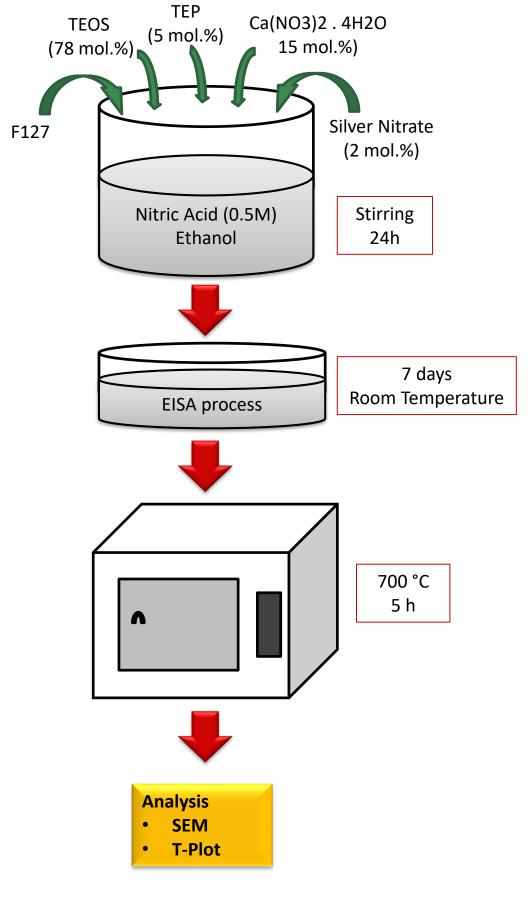

SYNTHESIS OF AN ANTIBACTERIAL MESOPOROUS BIOACTIVE CERAMIC BY USING A NON-IONIC SURFACTANT

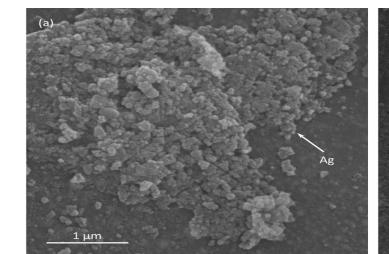


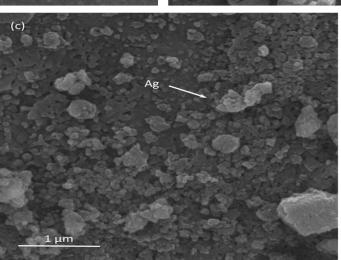
INTRODUCTION

- [1]
- \blacktriangleright Biomaterials \rightarrow Biological response \rightarrow Bio inert, Bioactive, Bioresorbable [1]
- > Bioactive Ceramics form a hydroxyl-carbonate-apatite (HCA) layer on their surface by modification and kinetic modification [2]
- Doping of silver in glass compounds causes antibacterial properties, biocompatibility and biodegradability [3]
- \rightarrow Porous materials \rightarrow porosity size \rightarrow macroporous, mesoporous, microporous [4]
- Synthesis of Mesoporous bioactive ceramic -> surfactant [5]
- \rightarrow Surfactant \rightarrow cationic, anionic, non-ionic, and amphoteric [5]
- \succ The surfactant Pluronic F127 has the chemical formula EO106PO70EO106 \rightarrow generally forms a cubic mesoporous structure for silicate compounds [6]

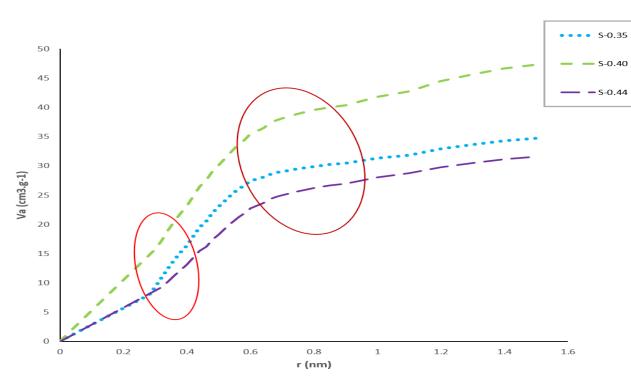
OBJECTIVES

Table 1: The amounts of surfactant used for sample preparation.


Samples	Surfactant (g)	
S-0.35	3.2	
S-0.40	3.6	
S-0.44	4	


Sara Mortazavi, Mansour Rahsepar

Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, I.R. Iran


MATERIALS & METHODS

RESULTS

Figure 1: SEM micrographs of a)S-0.35, b)S-0.40 and c)S-0.44 samples

Figure 2: t-plot diagram of samples

Table 2: t-plot data of samples.

		-	
Sample	External surface area (m2.g-1)	Pore volume (cm3.g-1)	Surface area (m2.g-1)
S-0.35	6.870	0.0435	71.482
S-0.40	10.751	0.057	92.042
S-0.44	6.561	0.039	58.102

SEM

T-Plot:

Authors gratefully appreciate Shiraz University for the financial support of this research work

CONCLUSIONS

✓ the ceramics surface is smooth and homogeneous Ag particles were decorated on ceramic particles

 \checkmark there are meso-sized porosities in all three samples

✓ sample S-0.40 has a higher specific surface area, external surface area and pore volume \rightarrow it is a more desirable sample \rightarrow tissue engineering and drug delivery applications

REFERENCES

1) S. Ramakrishna, M. Ramalingam, T. S. Kumar, and W. O. Soboyejo, Biomaterials: a nano approach. CRC press, 2016.

2) L. L. Hench, "Bioceramics: from concept to clinic," Journal of the american ceramic society, vol. 74, no. 7, pp. 1487-1510, 1991.

3) M. Diba and A. Boccaccini, "Silver-containing bioactive glasses for tissue engineering applications," in Precious Metals for Biomedical Applications: Elsevier, 2014, pp. 177-211.

4) K. Ishizaki, S. Komarneni, and M. Nanko, Porous Materials: Process technology and applications. Springer science & business media, 2013.

5) B. Kronberg, K. Holmberg, and B. Lindman, Surface chemistry of surfactants and polymers. John Wiley & Sons, 2014.

6) D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, "Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures," Journal of the American Chemical Society, vol. 120, no. 24, pp. 6024-6036, 1998

ACKNOWLEDGEMENTS

Please use QR code to link to your poster at https://event.ut.ac.ir/