Ferroelectric In2Se3 Monolayer: A Promising Candidate as NH3 Gas Sensor and Capturer

Mohammadamin Akhound, Maryam Soleimani, and Mahdi Pourfath*

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

ABSTRACT

- **D** 2D ferroelectrics present applications in wide range of electronics.
- \Box Ferroelectric In₂Se₃ monolayer is a suitable candidate to be used as a gas sensor
- \Box in this work, different gas molecules adsorb on distinct surfaces of In₂Se₃ monolayer, and their adsorption behaviours are investigated.

COMPUTATIONAL METHODS

- Density functional theory (DFT) calculations.
- The Vienna Ab initio Simulation Package (VASP) implementation^[1].
- Perdew-Burke-Ernzerhof (PBE) version of the generalized gradient approximation (GGA)^[2].
- \Box Relaxing structures until the energy and force on each atom are less than 10^{-5} eV and 0.01 eV/Å, respectively.
- \Box The Brillouin zone integration sampling by $6 \times 6 \times 1$ and $10 \times 10 \times 1$ k-grid mesh.
- \Box a 2×2 supercell was used to simulate the periodic structure of In₂Se₃ monolayer.
- A vacuum space greater than 20 Å was applied in the *z* direction.
- $\Box \quad E_{ads} = E_{total} E_{In2Se3} E_{gas}$
- $\Box \quad \Delta \rho = \rho_{In2Se3+gas} \rho_{In2Se3} \rho_{gas}$

\Box The lattice parameter is 4.06 Å and height of In₂Se₃ monolayer is 6.82 Å, which is consistent with other theorical studies.^[3]

Figure 1: a schematic illustration of (a) top, and (b) side view of In_2Se_3 monolayer used for our calculations. (c) Two stable structures of In₂Se₃ which can be switch to each other by laterally moving the central Se atom and reorientation of top In atoms. Both surfaces have spontaneous electric polarization with opposite directions. Up and down arrows refer to positive and negative polarizations, respectively.

- Adsorption energy and charge transfer for the most stable structures of CO, CO₂, H₂O, H₂S, NH₃, NO, NO₂, CH₄, and O₂ gas molecules are shown in Table 1.
- **The obtained results are in complete agreement with previous study** ^[4].
- There is different gas adsorption behaviours on distinct surfaces of In₂Se₃.
- \Box In₂Se₃ is most preferred for NH₃ molecule with suitable adsorption strength and apparent charge transfer.
- **NH**₃ molecule is physically adsorbed on up-side, while its adsorption type is chemically for another side.

Table 1: Adsorption energies, Charge transfers, and hearest distances between gas molecules and In ₂ se ₃ monolayer.			
Gas	E _{ads} (eV)	СТ (е)	D _{gas-substrate} (Å)
NH ₃ (up, down)	-0.15, -0.47	-0.0006, 0.1201	2.51, 2.27
CO (up, down)	-0.09, -0.09	-0.0142, -0.0153	3.5, 3.43
NO ₂ (up, down)	-0.28, -0.3	-0.1852, -0.1530	2.78, 2.56
CO ₂ (up, down)	-0.13, -0.13	-0.0233, -0.0213	3.4, 3.37
H ₂ O (up, down)	-0.12, -0.16	-0.0269, -0.0283	2.55, 2.28
H ₂ S (up, down)	-0.12, -0.12	-0.008, -0.007	2.99, 2.96
NO (up, down)	-0.1, -0.35	-0.0058, -0.0359	3.1, 2.43
O ₂ (up, down)	-0.12, -0.25	-0.1059, -0.2169	3.24, 1.74
CH ₄ (up, down)	-0.12, -0.13	0.9665, 0.9428	2.74, 2.75
H ₂ (up, down)	-0.05, -0.05	-0.0189, -0.0059	2.77, 2.92

RESULTS

- □ There is noticeable structure deformation for NH₃ adsorption on down-side and the N atom of gas molecule is bonded with In atom of substrate in the second layer.
- **G** For another side, the structure of substrate is not strongly distorted and there is no chemical bonding between gas molecule and the substrate.

Figure 2: Most stable structure for the adsorption of various gas molecules on different surfaces of In₂Se₃: (a) NO_{2} , (b) NH_{2} , and (c) CO adsorption.

Figure 3: The PDOS of (a) CO, (b) NH₃, and (c) NO₂ molecules adsorbed on In₂Se₃ monolayer for up and down sides.

The controllable adsorption manner for different gas molecules is obtained using an external Electric-field.

Figure 4: Electric field effects on charge transfer of CO, NH₃, and NO₂ molecules adsorbed on (a) up and (b) down sides of In₂Se₃ monolayer

- capture.
- [3]
- [4]

Different DOS, CDD, and ESP for adsorption on distinct surfaces of the substrate, demonstrate the accuracy of research findings.

Figure 5: Electrostatic surface potential (ESP) for (a) CO, (b) NH₃, and (c) NO₂ gas molecule adsorption on up and down sides of In₂Se₃ monolayer

CONCLUSIONS

 \Box Based on first principles calculations, we found that In_2Se_3 monolayer is a suitable substrate for NH₃ gas capture with appropriate adsorption energy.

 \Box There is different adsorption energy on different surfaces of In₂Se₃, so an acceptable approach to capture or release NO, NO₂, NH₃, and O₂ gas molecules has been earned.

The effect of external electric-filed on adsorption strength of NO₂, NH₃, and CO molecules, represents an effective way for achieving reversible gas

REFRENCES

[1] Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16), 11169.

[2] Wang, Y., & Perdew, J. P. (1991). Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B, 44(24), 13298.

Ding, W., Zhu, J., Wang, Z., Gao, Y., Xiao, D., Gu, Y., & Zhu, W. (2017). Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. *Nature communications, 8*(1), 1-8.

Tang, X., Shang, J., Gu, Y., Du, A., & Kou, L. (2020). Reversible gas capture using a ferroelectric switch and 2D molecule multiferroics on the In2Se3 monolayer. Journal of *Materials Chemistry A*, *8*(15), 7331-7338.

CONTACT

Please use QR code to link to your poster at https://event.ut.ac.ir/